题目内容

设函数,其中为常数。

(Ⅰ)当时,判断函数在定义域上的单调性;

(Ⅱ)若函数有极值点,求的取值范围及的极值点。

(Ⅰ)当时, ,函数在定义域上单调递增.

(Ⅱ)当且仅当有极值点;

时,有惟一最小值点

时,有一个极大值点和一个极小值点


解析:

(Ⅰ)由题意知,的定义域为,    ……… 1分

   ……… 2分

∴当时, ,函数在定义域上单调递增.      ………………3分

(Ⅱ)①由(Ⅰ)得,当时,函数无极值点.………… 4分

时,有两个相同的解

但当时,,当时,

时,函数上无极值点.           ………………5分

③当时,有两个不同解,

时,

,

此时 在定义域上的变化情况如下表:

极小值

由此表可知:当时,有惟一极小值点,…  8分

ii)   当时,0<<1

此时,的变化情况如下表:

极大值

极小值

由此表可知:时,有一个极大值和一个极小值点;              ………………………………11分

综上所述:

当且仅当有极值点;

时,有惟一最小值点

时,有一个极大值点和一个极小值点………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网