题目内容
设M是又满足下列性质的函数f(x)构成的集合:在定义域存中在x,使得f(x+1)=f(x)+f(1)成立已知下列函数:①f(x)=;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cosπx,其中属于集合M的函数是( )
A.①③
B.②③
C.③④
D.②④
【答案】分析:根据集合M的定义,可根据函数的解析式,f(x+1)=f(x)+f(1)构造方程,若方程有根,说明函数符合集合M的定义,若方程无根,说明函数不符号集合M的定义,由此对四个函数逐一进行判断,即可得到答案.
解答:解:①中,若存在x,使f(x+1)=f(x)+f(1)
则,即x2+x+1=0,
∵△=1-4=-3<0,故方程无解.即f(x)=∉M
②中,存在x=1,使f(x+1)=2x+1=f(x)+f(1)=2x+2成立,即f(x)=2x∈M;
③中,若存在x,使f(x+1)=f(x)+f(1)
则lg[(x+1)2+2]=lg(x2+2)+lg3
即2x2-2x+3=0,
∵△=4-24=-20<0,故方程无解.即f(x)=lg(x2+2)∉M
④存在x=,使f(x+1)=cosπ(x+1)=f(x)+f(1)=cosπx+cosπ成立,即f(x)=cosπx∈M;
综上可知②④中的函数属于集合M,
故选D
点评:本题考查的知识点是元素与集合关系的判断,及其它方程的解法,掌握判断元素与集合关系的方法,即元素是否满足集合的性质是解答本题的关键.
解答:解:①中,若存在x,使f(x+1)=f(x)+f(1)
则,即x2+x+1=0,
∵△=1-4=-3<0,故方程无解.即f(x)=∉M
②中,存在x=1,使f(x+1)=2x+1=f(x)+f(1)=2x+2成立,即f(x)=2x∈M;
③中,若存在x,使f(x+1)=f(x)+f(1)
则lg[(x+1)2+2]=lg(x2+2)+lg3
即2x2-2x+3=0,
∵△=4-24=-20<0,故方程无解.即f(x)=lg(x2+2)∉M
④存在x=,使f(x+1)=cosπ(x+1)=f(x)+f(1)=cosπx+cosπ成立,即f(x)=cosπx∈M;
综上可知②④中的函数属于集合M,
故选D
点评:本题考查的知识点是元素与集合关系的判断,及其它方程的解法,掌握判断元素与集合关系的方法,即元素是否满足集合的性质是解答本题的关键.
练习册系列答案
相关题目