题目内容

(备用题)如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的点M(1,
3
2
)
到它的两焦点F1、F2的距离之和为4,A、B分别是它的左顶点和上顶点.
(I)求此椭圆的方程及离心率;
(II)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程.
分析:(I)由椭圆上的点M到它的两焦点F1、F2的距离之和为4,可得a的值,再将M(1,
3
2
)代入,即可确定椭圆方程及离心率;
(II)设l的方程与椭圆方程联立,利用韦达定理确定|PQ|的表达式,从而可求|PQ|的最大值及此时直线l的方程.
解答:解:(I)由题意,∵椭圆上的点M到它的两焦点F1、F2的距离之和为4,
∴2a=4,∴a=2
∴方程为
x2
4
+
y2
b2
=1

将M(1,
3
2
)代入得
1
4
+
(
3
2
)
2
b2
=1
,∴b2=3,∴c2=1
∴椭圆方程为:
x2
4
+
y2
3
=1
e=
c
a
=
1
2

(II)∵kAB=
3
2
,∴设l的方程为:y=
3
2
x+m

y=
3
2
x+m
x2
4
+
y2
3
=1
,∴3x2+2
3
mx+2m2-6=0

∴△=12(6-m2)>0,∴0≤m2<6
P(x1y1),Q(x2y2)
,则x1+x2=-
2
3
m
3
,x1x2=
2m2-6
3

∴|PQ|=
1+k2
(x1+x2)2-4x1x2
=
1+
3
4
4m2
3
-4•
2m2-6
3
=
42-7m2
3

∵0≤m2<6,∴m2=0,即m=0时,|PQ|max=
14
,此时l的方程为y=
3
2
x
点评:本题考查椭圆的定义与标准方程,考查直线与椭圆的位置关系,考查弦长公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网