题目内容
甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{0,1,2,…..,9},若|a-b|≤2,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为
.
11 |
25 |
11 |
25 |
分析:由题意知本题是一个古典概型.试验发生的所有事件是从0,1,2,3,4,5,6,7,8,9十个数中任取两个数由分步计数原理知共有10×10种不同的结果,而满足条件的|a-b|≤2的情况通过列举得到共44种情况,代入公式得到结果.
解答:解:由题意知本题是一个古典概型,
试验发生的所有事件是从0,1,2,3,4,5,6,7,8,9十个数中任取两个共有10×10种不同的结果,
则|a-b|≤1的情况有0,0;1,1;2,2;3,3;4,4;5,5;6,6;7,7;8,8;9,9;
0,1;1,0;1,2;2,1;2,3;3,2;3,4;4,3;4,5;5,4;5,6;6,5;6,7;7,6;7,8;8,7;8,9;9,8;0,2;2,0;1,3;3,1;2,4;4,2;3,5;5,3;4,6;6,4;5,7;7,5;6,8;8,6;7,9;9,7;共44种情况,
甲乙出现的结果共有10×10=100,
∴他们”心有灵犀”的概率为P=
=
.
故答案为:
试验发生的所有事件是从0,1,2,3,4,5,6,7,8,9十个数中任取两个共有10×10种不同的结果,
则|a-b|≤1的情况有0,0;1,1;2,2;3,3;4,4;5,5;6,6;7,7;8,8;9,9;
0,1;1,0;1,2;2,1;2,3;3,2;3,4;4,3;4,5;5,4;5,6;6,5;6,7;7,6;7,8;8,7;8,9;9,8;0,2;2,0;1,3;3,1;2,4;4,2;3,5;5,3;4,6;6,4;5,7;7,5;6,8;8,6;7,9;9,7;共44种情况,
甲乙出现的结果共有10×10=100,
∴他们”心有灵犀”的概率为P=
44 |
100 |
11 |
25 |
故答案为:
11 |
25 |
点评:本题主要考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题.
练习册系列答案
相关题目