题目内容

如图所示,在空间四边形ABCD中,点E、F分别是BC、AD上的点,已知AB=4,CD=20,EF=7, 。求异面直线AB与CD所成的角。

120°


解析:

在BD上取一点G,使得,连结EG、FG

  在ΔBCD中,,故EG//CD,并且

  所以,EG=5;类似地,可证FG//AB,且

  故FG=3,在ΔEFG中,利用余弦定理可得

  cos∠FGE=,故∠FGE=120°。

  另一方面,由前所得EG//CD,FG//AB,所以EG与FG所成的锐角等于AB与CD所成的角,于是AB与CD所成的角等于60°。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网