题目内容
设数列{an}的各项均为正数,它的前n项和为Sn(n∈N*),已知点(an,4Sn)在函数f (x)=x2+2x+1的图象上.(1)证明{an}是等差数列,并求an;
(2)设m、k、p∈N*,m+p=2k,求证:
1 |
Sm |
1 |
Sp |
2 |
Sk |
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
分析:(1)由4Sn=an2+2an+1,递推得4Sn-1=an-12+2an-1+1(n≥2),两式相减整理可得(an+an-1)(an-an-1-2)=0,由an+an-1≠0,可知an-an-1=2,符合等差数列的定义.
(2)由(1)可求得Sn=
=n2,从而有Sm=m2,Sp=p2,Sk=k2.再作差比较.
(3)由特殊到一般可猜想结论成立,设等差数列{an}的首项为a1,公差为d,则Sn=na1+
d=
,可证明Sm+Sp-2Sk=ma1+
d+pa1+
d-[2ka1+k(k-1)d]=(m+p)a1+
d-[2ka1+(k2-k)d]=
•d=
≥0,SmSp=
=
≤
=(
)2,从而得证.
(2)由(1)可求得Sn=
n(1+2n-1) |
2 |
(3)由特殊到一般可猜想结论成立,设等差数列{an}的首项为a1,公差为d,则Sn=na1+
n(n-1) |
2 |
n(a1+an) |
2 |
m(m+1) |
2 |
p(p-1) |
2 |
m2+p2-(m+p) |
2 |
m2+p2-2× (
| ||
2 |
(m-p)2 |
4 |
mp(a1+am)(a1+ap) |
4 |
mp[a12+a1(am+ap)+amap] |
4 |
k2(a1+ak) 2 |
4 |
Sk |
2 |
解答:证明:(1)∵4Sn=an2+2an+1,
∴4Sn-1=an-12+2an-1+1(n≥2).
两式相减得4an=an2-an-12+2an-2an-1.
整理得(an+an-1)(an-an-1-2)=0,
∵an+an-1≠0,
∴an-an-1=2(常数).
∴{an}是以2为公差的等差数列.又4S1=a12+2a1+1,即a12-2a1+1=0,解得a1=1,
∴an=1+(n-1)×2=2n-1.(4分)
(2)由(1)知Sn=
=n2,∴Sm=m2,Sp=p2,Sk=k2.
由
+
-
=
+
-
=
≥
≥
=0,
即
+
≥
.(7分)
(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,则Sn=na1+
d=
,
∵Sm+Sp-2Sk=ma1+
d+pa1+
d-[2ka1+k(k-1)d]=(m+p)a1+
d-[2ka1+(k2-k)d],
把m+p=2k代入上式化简得
Sm+SP-2Sk=
•d=
≥0,
∴Sm+Sp≥2Sk.
又SmSp=
=
≤
=
=
=(
)2
∴
+
=
≥
=
.
故原不等式得证.(14分)
∴4Sn-1=an-12+2an-1+1(n≥2).
两式相减得4an=an2-an-12+2an-2an-1.
整理得(an+an-1)(an-an-1-2)=0,
∵an+an-1≠0,
∴an-an-1=2(常数).
∴{an}是以2为公差的等差数列.又4S1=a12+2a1+1,即a12-2a1+1=0,解得a1=1,
∴an=1+(n-1)×2=2n-1.(4分)
(2)由(1)知Sn=
n(1+2n-1) |
2 |
由
1 |
Sm |
1 |
Sp |
2 |
Sk |
1 |
m2 |
1 |
p2 |
2 |
k2 |
k2(m2+p2)-2m2p2 |
m2p2k2 |
≥
(
| ||
m2p2k2 |
2mp•mp-2m2p2 |
m2p2k2 |
即
1 |
Sm |
1 |
Sp |
2 |
Sk |
(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,则Sn=na1+
n(n-1) |
2 |
n(a1+an) |
2 |
∵Sm+Sp-2Sk=ma1+
m(m+1) |
2 |
p(p-1) |
2 |
m2+p2-(m+p) |
2 |
把m+p=2k代入上式化简得
Sm+SP-2Sk=
m2+p2-2× (
| ||
2 |
(m-p)2 |
4 |
∴Sm+Sp≥2Sk.
又SmSp=
mp(a1+am)(a1+ap) |
4 |
mp[a12+a1(am+ap)+amap] |
4 |
≤
(
| ||||
4 |
=
k2(a12+ak2+2a1ak) |
4 |
=
k2(a1+ak) 2 |
4 |
Sk |
2 |
∴
1 |
Sm |
1 |
Sp |
Sm+Sp |
SmSp |
2Sk | ||
(
|
2 |
Sk |
故原不等式得证.(14分)
点评:本题主要考查数列与函数,不等式的综合运用,主要涉及了等差数列通项及前n项和,不等式证明,还考查了放缩法,转化思想.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目