题目内容
(12分)已知f(x)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305126161178.png)
(1)求f(
),f[f(-
)]值;
(2)若f(x)=
,求x值;
(3)作出该函数简图;
(4)求函数值域.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305126161178.png)
(1)求f(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512632388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
(2)若f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512663338.png)
(3)作出该函数简图;
(4)求函数值域.
(1)f[f(-
)]=f(
)=
;(2)x=-
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512741411.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305127722783.jpg)
(4)y∈[0, 2]
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512710367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512741411.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305127722783.jpg)
(4)y∈[0, 2]
判断
所在范围,选择函数属于那一段,对于f[f(-
)],先里后外,层层求解。第二问已知函数值求x的值,需要对分段函数讨论;分段函数作图要分段一段一段的作。然后根据图象可以确定函数的值域。
解:(1)f(
)=
f(-
)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
∴f[f(-
)]=f(
)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512710367.png)
(2)当-1≤x<0时 f(x)=-x=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
x=-
符合题意
当0≤x<1时 f(x)=x2=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
x=
或x=-
(不合,舍去)
当1≤x≤2时 f(x)=x=
(不合题意,舍去)
综上:x=-
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512741411.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305133812777.jpg)
(4)y∈[0, 2]
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512632388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
解:(1)f(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512632388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512632388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
∴f[f(-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512648382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512710367.png)
(2)当-1≤x<0时 f(x)=-x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230513022223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
当0≤x<1时 f(x)=x2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230513022223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512741411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512741411.png)
当1≤x≤2时 f(x)=x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
综上:x=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512726338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230512741411.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305133812777.jpg)
(4)y∈[0, 2]
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目