ÌâÄ¿ÄÚÈÝ
£¨Àí¿Æ£©ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬FΪÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µã£¬MΪÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬¹ýM£¬F£¬OÈýµãµÄÔ²µÄÔ²ÐÄΪQ£¬µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚµãM£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM£¿Èô´æÔÚ£¬Çó³öµãM£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÈôµãMµÄºá×ø±êΪ2£¬Ö±Ïßl£ºy=kx+
ÓëÅ×ÎïÏßCÓÐÁ½¸ö²»Í¬µÄ½»µãA¡¢B£¬lÓëÔ²QÓÐÁ½¸ö²»Í¬µÄ½»µãD¡¢E£¬Óú¬kµÄʽ×Ó±íʾ AB2+DE2£®
3 |
4 |
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚµãM£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM£¿Èô´æÔÚ£¬Çó³öµãM£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÈôµãMµÄºá×ø±êΪ2£¬Ö±Ïßl£ºy=kx+
1 |
4 |
·ÖÎö£º£¨1£©¡ÑQ¹ýM¡¢F¡¢OÈýµã£¬½áºÏÔ²µÄÐÔÖʵÃQµãÒ»¶¨ÔÚÏ߶ÎFOµÄÖд¹ÏßÉÏ£¬ÔÙ¸ù¾ÝQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀ룬½¨Á¢·½³ÌÇóµÃp£¬´Ó¶øµÃµ½Å×ÎïÏßCµÄ·½³Ì£»
£¨2£©½«Å×ÎïÏß»¯³É¶þ´Îº¯Êý£¬ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒ壬µÃµ½ÇÐÏß·½³Ì£¬´Ó¶øÈ·¶¨QµÄ×ø±ê£¬ÀûÓÃ|QM|=|OQ|£¬¼´¿ÉÇó³öMµÄ×ø±ê£»
£¨3£©Çó³ö¡ÑQµÄ·½³Ì£¬ÀûÓÃÖ±ÏßÓëÅ×ÎïÏß·½³ÌÁªÁ¢·½³Ì×飬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³ö|AB|2£®Í¬ÀíÇó³ö|DE|2£¬¼´¿ÉµÃµ½|AB|2+|DE|2µÄ±í´ïʽ£®
£¨2£©½«Å×ÎïÏß»¯³É¶þ´Îº¯Êý£¬ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒ壬µÃµ½ÇÐÏß·½³Ì£¬´Ó¶øÈ·¶¨QµÄ×ø±ê£¬ÀûÓÃ|QM|=|OQ|£¬¼´¿ÉÇó³öMµÄ×ø±ê£»
£¨3£©Çó³ö¡ÑQµÄ·½³Ì£¬ÀûÓÃÖ±ÏßÓëÅ×ÎïÏß·½³ÌÁªÁ¢·½³Ì×飬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³ö|AB|2£®Í¬ÀíÇó³ö|DE|2£¬¼´¿ÉµÃµ½|AB|2+|DE|2µÄ±í´ïʽ£®
½â´ð£º½â£º£¨1£©¡ß¡ÑQ¹ýM¡¢F¡¢OÈýµã£¬
¡àQÒ»¶¨ÔÚÏ߶ÎFOµÄÖд¹ÏßÉÏ£¬
¡ßÅ×ÎïÏßx2=2pyµÄ½¹µãF£¨0£¬
£©£¬O£¨0£¬0£©
¡àFOµÄÖд¹ÏßΪ£ºy=
£¬
ÉèQ£¨xQ£¬yQ£©£¬µÃyQ=
£¬
½áºÏÅ×ÎïÏߵĶ¨Ò壬µÃQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
-£¨-
£©=
£¬½âÖ®µÃp=1
Óɴ˿ɵã¬Å×ÎïÏßCµÄ·½³ÌΪx2=2y£»
£¨2£©Éè´æÔÚµãM£¨x0£¬
£©£¬Å×ÎïÏß»¯³É¶þ´Îº¯Êý£ºy=
x2£¬
¶Ôº¯ÊýÇóµ¼Êý£¬µÃy¡ä=x£¬µÃÇÐÏßMQ£ºy-
=x0£¨x-x0£©£¬
ÓÉ£¨1£©Öª£¬yQ=
£¬ËùÒÔ¶ÔMQ·½³ÌÁîy=
£¬µÃxQ=
+
¡àQ£¨
+
£¬
£©£¬
½áºÏ|MQ|=|OQ|µÃ(
-
)2+(
-
)2=(
+
)2+
¡àx0=¡À
¡ßMΪÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬
¡à´æÔÚM£¨
£¬1£©£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM£»
£¨3£©µ±x0=2ʱ£¬ÓÉ£¨2£©µÄQ£¨
£¬
£©£¬¡ÑQµÄ°ë¾¶Îª£ºr=
ËùÒÔ¡ÑQµÄ·½³ÌΪ£¨x-
£©2+£¨y-
£©2=
£®
ÓÉ
£¬ÕûÀíµÃ2x2-4kx-1=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÓÚ¡÷=16k2+8£¾0£¬x1+x2=2k£¬x1x2=-
£¬
ËùÒÔ|AB|2=£¨1+k2£©[£¨x1+x2£©2-4x1x2]=£¨1+k2£©£¨4k2+2£©£®
Ö±Ïß·½³Ì´úÈëÔ²µÄ·½³Ì£¬ÕûÀíµÃ£¨1+k2£©x2-
x-
=0£¬
ÉèD£¬EÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x3£¬y3£©£¬£¨x4£¬y4£©£¬
ÓÉÓÚ¡÷£¾0£¬x3+x4=
£¬x3x4=-
£®
ËùÒÔ|DE|2=£¨1+k2£©[£¨x3+x4£©2-4x3x4]=
+
£¬
Òò´Ë|AB|2+|DE|2=£¨1+k2£©£¨4k2+2£©+
+
£®
¡àQÒ»¶¨ÔÚÏ߶ÎFOµÄÖд¹ÏßÉÏ£¬
¡ßÅ×ÎïÏßx2=2pyµÄ½¹µãF£¨0£¬
p |
2 |
¡àFOµÄÖд¹ÏßΪ£ºy=
p |
4 |
ÉèQ£¨xQ£¬yQ£©£¬µÃyQ=
p |
4 |
½áºÏÅ×ÎïÏߵĶ¨Ò壬µÃQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
p |
4 |
p |
2 |
3 |
4 |
Óɴ˿ɵã¬Å×ÎïÏßCµÄ·½³ÌΪx2=2y£»
£¨2£©Éè´æÔÚµãM£¨x0£¬
x02 |
2 |
1 |
2 |
¶Ôº¯ÊýÇóµ¼Êý£¬µÃy¡ä=x£¬µÃÇÐÏßMQ£ºy-
x02 |
2 |
ÓÉ£¨1£©Öª£¬yQ=
1 |
4 |
1 |
4 |
1 |
4x0 |
x0 |
2 |
¡àQ£¨
1 |
4x0 |
x0 |
2 |
1 |
4 |
½áºÏ|MQ|=|OQ|µÃ(
1 |
4x0 |
x0 |
2 |
1 |
4 |
x02 |
2 |
1 |
4x0 |
x0 |
2 |
1 |
16 |
¡àx0=¡À
2 |
¡ßMΪÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬
¡à´æÔÚM£¨
2 |
£¨3£©µ±x0=2ʱ£¬ÓÉ£¨2£©µÄQ£¨
9 |
8 |
1 |
4 |
| ||
8 |
9 |
8 |
1 |
4 |
85 |
64 |
ÓÉ
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÓÚ¡÷=16k2+8£¾0£¬x1+x2=2k£¬x1x2=-
1 |
2 |
ËùÒÔ|AB|2=£¨1+k2£©[£¨x1+x2£©2-4x1x2]=£¨1+k2£©£¨4k2+2£©£®
Ö±Ïß·½³Ì´úÈëÔ²µÄ·½³Ì£¬ÕûÀíµÃ£¨1+k2£©x2-
9 |
4 |
1 |
16 |
ÉèD£¬EÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x3£¬y3£©£¬£¨x4£¬y4£©£¬
ÓÉÓÚ¡÷£¾0£¬x3+x4=
9 |
4(1+k2) |
1 |
16(1+k2) |
ËùÒÔ|DE|2=£¨1+k2£©[£¨x3+x4£©2-4x3x4]=
81 |
16(1+k2) |
1 |
4 |
Òò´Ë|AB|2+|DE|2=£¨1+k2£©£¨4k2+2£©+
81 |
16(1+k2) |
1 |
4 |
µãÆÀ£º±¾Ìâ¸ø³öÅ×ÎïÏßÉÏÁ½¸öµãÓëËüµÄ½¹µãÔÚͬһ¸öÔ²ÉÏ£¬ÔÚÒÑÖªÔ²Ðĵ½×¼Ïß¾àÀëµÄÇé¿öÏÂÇóÅ×ÎïÏß·½³Ì²¢Ì½Ë÷Å×ÎïÏßµÄÇÐÏßÎÊÌ⣬×ÅÖØ¿¼²éÁËÅ×ÎïÏߵıê×¼·½³Ì¡¢¼òµ¥¼¸ºÎÐÔÖʺÍÖ±ÏßÓëÅ×ÎïÏß¹ØϵµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿