题目内容

设a>0,b>0,且a+b=1,求证:(a+
1
a
)2+(b+
1
b
)2
25
2
分析:利用基本不等式,先证明
1
ab
≥4
,再利用(a+
1
a
)
2
+(b+
1
b
)
2
≥2(
a+
1
a
+b+
1
b
2
)
2
=2(
1+
1
a
+
1
b
2
)
2
,即可得到结论.
解答:证明:∵a>0,b>0,且a+b=1,
ab
a+b
2
=
1
2

ab≤
1
4
,∴
1
ab
≥4

(a+
1
a
)2+(b+
1
b
)2≥2(
a+
1
a
+b+
1
b
2
)2=2(
1+
1
a
+
1
b
2
)2
=2(
1+
a+b
ab
2
)2=2(
1+
1
ab
2
)2≥2(
1+4
2
)2=
25
2

(a+
1
a
)2+(b+
1
b
)2
25
2
点评:本题考查不等式的证明,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网