题目内容
8.设x,y满足约束条件$\left\{\begin{array}{l}{x≤0}\\{y≤0}\\{\frac{x}{3a}+\frac{y}{4a}≤1(a<0)}\end{array}\right.$,若z=$\frac{y-1}{x-1}$的最小值为(x2-$\frac{1}{{x}^{3}}$)5的展开式的常数项的$\frac{1}{40}$,则实数a值为-1.分析 根据二项展开式的内容,求出常数项,即目标函数的最小值,利用线性规划的知识进行求解.
解答 解:(x2-$\frac{1}{{x}^{3}}$)5的展开式的通项公式为${T}_{k+1}={C}_{5}^{k}({x}^{2})^{5-k}•(-\frac{1}{{x}^{3}})^{k}$=${C}_{5}^{k}(-1)^{k}$•x10-2k-3k,
由10-2k-3k=0解得k=2,
即展开式的常数项为${C}_{5}^{2}(-1)^{2}$=10.
则z=$\frac{y-1}{x-1}$的最小值为10×$\frac{1}{40}$=$\frac{1}{4}$,
作出不等式组对应的平面区域由图象知,
到A(3a,0)到定点E(1,1)的斜率最小,
此时k=$\frac{-1}{3a-1}=\frac{1}{4}$,
即3a-1=-4,3a=-3,
解得a=-1,
故答案为:-1
点评 本题主要考查线性规划的应用,根据二项式定理的内容求出目标函数的最小值,以及结合数形结合,利用两点的斜率公式是解决本题的关键.综合性较强.
练习册系列答案
相关题目
16.人们常说“无功不受禄”,这句话表明“受禄”是“有功”的( )
A. | 充分条件 | B. | 必要条件 | ||
C. | 充要条件 | D. | 既不充分又不必要条件 |
3.已知集合M={x|y=ln(1-2x)},集合N={y|y=ex-3,x∈R},则∁RM∩N=( )
A. | {x|x$≥\frac{1}{2}$} | B. | {y|y>0} | C. | {x|0<x<$\frac{1}{2}$} | D. | {x|x<0} |
20.某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费x与旅游收入y(单位:万元)之间有如表对应数据:
(Ⅰ)求旅游收入y对广告支出费x的线性回归方程y=bx+a,若广告支出费为12万元,预测旅游收入;
(Ⅱ)在已有的五组数据中任意抽取两组,根据(Ⅰ)中的线性回归方程,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{\;}$$\overline{x}$,$\overline{y}$为样本平均值.
参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{i}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380.
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(Ⅱ)在已有的五组数据中任意抽取两组,根据(Ⅰ)中的线性回归方程,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{\;}$$\overline{x}$,$\overline{y}$为样本平均值.
参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{i}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380.