题目内容

1.定义某种运算?,a?b=$\left\{\begin{array}{l}{|b|,a≥b}\\{a,a<b}\end{array}\right.$,设f(x)=(0?x)x-(3?x),则f(x)在区间[-3,3]上的最小值-12.

分析 由定义可知0?x=$\left\{\begin{array}{l}{-x,x≤0}\\{0,x>0}\end{array}\right.$,3?x=$\left\{\begin{array}{l}{|x|,x≤3}\\{3,x>3}\end{array}\right.$;从而化简f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤0}\\{-x,0<x≤3}\\{-3,x>3}\end{array}\right.$,从而讨论求最小值.

解答 解:∵a?b=$\left\{\begin{array}{l}{|b|,a≥b}\\{a,a<b}\end{array}\right.$,
∴0?x=$\left\{\begin{array}{l}{-x,x≤0}\\{0,x>0}\end{array}\right.$,
3?x=$\left\{\begin{array}{l}{|x|,x≤3}\\{3,x>3}\end{array}\right.$;
故f(x)=(0?x)x-(3?x)
=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤0}\\{-x,0<x≤3}\\{-3,x>3}\end{array}\right.$,
故当x∈[-3,0]时,
fmin(x)=f(-3)=-12;
当x∈(0,3]时,
fmin(x)=f(3)=-3;
故f(x)在区间|-3,3|上的最小值为-12;
故答案为:-12.

点评 本题考查了学生对新定义的接受与转化能力,同时考查了分段函数的最值问题,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网