ÌâÄ¿ÄÚÈÝ
4£®Éè$\overrightarrow{a}$=£¨$\sqrt{2}$£¬m£©£¨m£¾0£©£¬$\overrightarrow{b}$=£¨sinx£¬cosx£©ÇÒº¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$µÄ×î´óֵΪ2£®£¨1£©ÇómÓ뺯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©¡÷ABCÖУ¬f£¨A-$\frac{¦Ð}{4}$£©+f£¨B-$\frac{¦Ð}{4}$£©=12$\sqrt{2}$sinAsinB£¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒC=$\frac{¦Ð}{3}$£¬c=$\sqrt{6}$£¬Çó¡÷ABCµÄÃæ»ý£®
·ÖÎö £¨1£©¸ù¾Ýº¯Êý$f£¨x£©=\vec a•\vec b$µÄ×î´óֵΪ2£¬ÇómÓ뺯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©ÀûÓÃ$f£¨{{A}-\frac{¦Ð}{4}}£©+f£¨{{B}-\frac{¦Ð}{4}}£©=12\sqrt{2}sin{A}sin{B}$£¬½áºÏÕýÏÒ¶¨Àí£¬¿ÉµÃa+b=3ab£®½áºÏÓàÏÒ¶¨Àíc2=a2+b2-2abcosC£¬±äÐεÃc2=£¨a+b£©2-2ab-2abcosC¼´3a2b2-ab-2=0£¬Çó³öab£¬¼´¿ÉÇó¡÷ABCµÄÃæ»ý£®
½â´ð ½â£º£¨1£©$f£¨x£©=\sqrt{2}sinx+mcosx=\sqrt{{m^2}+2}sin£¨{x+¦Õ}£©$$£¨{tan¦Õ=\frac{{\sqrt{2}m}}{2}}£©$¡£¨4·Ö£©
Öª${[{f£¨x£©}]_{max}}=\sqrt{{m^2}+2}$£¬Áî$\sqrt{{m^2}+2}=2$£¬µÃ$m=\sqrt{2}$.$T=\frac{2¦Ð}{1}=2¦Ð$¡£¨6·Ö£©
£¨2£©ÓÉ£¨1£©Öª$m=\sqrt{2}$ʱ£¬$f£¨x£©=2sin£¨{x+\frac{¦Ð}{4}}£©$£®
Ôò$f£¨{{A}-\frac{¦Ð}{4}}£©+f£¨{{B}-\frac{¦Ð}{4}}£©=12\sqrt{2}sin{A}sin{B}$£¬µÃ$sinA+sinB=6\sqrt{2}sinAsinB$¡£¨7·Ö£©
½áºÏÕýÏÒ¶¨Àí$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2\sqrt{2}$µÃ$sinA=\frac{a}{{2\sqrt{2}}}£¬sinB=\frac{b}{{2\sqrt{2}}}$£¬
¼´a+b=3ab£®
½áºÏÓàÏÒ¶¨Àíc2=a2+b2-2abcosC£¬
±äÐεÃc2=£¨a+b£©2-2ab-2abcosC¼´3a2b2-ab-2=0£®¡£¨10·Ö£©
½âµÃab=1»òab=-$\frac{2}{3}$£¨ÉáÈ¥£©£¬
¹Ê ${S_{¡÷ABC}}=\frac{1}{2}absinC=\frac{{\sqrt{3}}}{4}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýµÄ»¯¼ò£¬¿¼²éÕýÏÒ¡¢ÓàÏÒ¶¨Àí£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬ÊôÓÚÖеµÌ⣮
A£® | $£¨0£¬\frac{1}{2}£©$ | B£® | £¨0£¬1£© | C£® | $£¨-\frac{1}{2}£¬0£©$ | D£® | £¨-1£¬0£© |