题目内容
已知数列{an}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{bn}满足:bn-bn-1=an-1(n≥2,n∈N*),b1=1.
(1)求an和bn;
(2)记数列cn=
,(n∈N*),若{cn}的前n项和为Tn,求证Tn∈[
,1).
(1)求an和bn;
(2)记数列cn=
1 |
bn+2n |
1 |
3 |
分析:(1)利用公差与首项表示已知,可求a1,d,进而可求an,由bn-bn-1=an-1=利用累加法可求bn
(2)由cn=
=
=
=2•(
-
),利用裂项可求Tn,可证
(2)由cn=
1 |
bn+2n |
2 |
n2+3n+2 |
2 |
(n+1)•(n+2) |
1 |
n+1 |
1 |
n+2 |
解答:解:(1)因为a1+a2+a3=6,a5=5,所以
⇒
,
所以an=n;
又bn-bn-1=an-1=n-1,
得bn-b1=
,所以bn=
+b1=
.
(2)因为cn=
=
=
=2•(
-
),
而0<
≤
,所以Tn∈[
,1).
|
|
所以an=n;
又bn-bn-1=an-1=n-1,
|
得bn-b1=
n(n-1) |
2 |
n(n-1) |
2 |
n2-n+2 |
2 |
(2)因为cn=
1 |
bn+2n |
2 |
n2+3n+2 |
2 |
(n+1)•(n+2) |
1 |
n+1 |
1 |
n+2 |
|
而0<
2 |
n+2 |
2 |
3 |
1 |
3 |
点评:本题主要考查了等差数列的通项公式及累加求解数列通项方法的应用,裂项求和是证明(2)的关键.
练习册系列答案
相关题目