题目内容
已知5sin2a=sin2°,则tan(a+1°) | tan(a-1°) |
分析:利用5sin2a=5sin[(a+1°)+(a-1°)],sin2°=sin[(a+1°)-(a-1°)],然后利用两角和公式化简整理得4tan(a+1°)=-6tan(a-1°),进而求得答案.
解答:解:5sin2a=sin2°
5sin[(a+1°)+(a-1°)]
=sin[(a+1°)-(a-1°)]
=5sin(a+1°)cos(a-1°)+5cos(a+1°)sin(a-1°)
=sin(a+1°)cos(a-1°)-cos(a+1°)sin(a-1°)
∴4sin(a+1°)cos(a-1°)=-6cos(a+1°)sin(a-1°)
两边除以cos(a-1°)cos(a+1°):
得4tan(a+1°)=-6tan(a-1°)
∴
=-
=-
故答案为-
.
5sin[(a+1°)+(a-1°)]
=sin[(a+1°)-(a-1°)]
=5sin(a+1°)cos(a-1°)+5cos(a+1°)sin(a-1°)
=sin(a+1°)cos(a-1°)-cos(a+1°)sin(a-1°)
∴4sin(a+1°)cos(a-1°)=-6cos(a+1°)sin(a-1°)
两边除以cos(a-1°)cos(a+1°):
得4tan(a+1°)=-6tan(a-1°)
∴
tan(a+1°) |
tan(a-1°) |
6 |
4 |
3 |
2 |
故答案为-
3 |
2 |
点评:本题主要考查了二倍角公式的关键求值.三角函数公式教多且复杂,平时应注意多积累.
练习册系列答案
相关题目