题目内容
已知椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_ST/0.png)
(1)求椭圆E的方程;
(2)过椭圆E的左顶点B作y轴平行线BQ,过点N作x轴平行线NQ,直线BQ与NQ相交于点Q.若△QMN是以MN为一条腰的等腰三角形,求直线MN的方程.
【答案】分析:(1)根据抛物线方程求得焦点坐标,进而设直线l:x=a+my代入抛物线方程设M(x1,y1),N(x2,y2),根据韦达定理可求得y1+y2和y1y2,进而求得x1x2,进而根据OM⊥ON得
进而求得a和b,则椭圆方程可得.
(2)先看当QM为等腰△QMN的底边时,进而推断出O是线段MQ的中点,求得m;再看当QN为等腰△QMN的底边时,根据y1y2=-16,求得m,则直线方程可得.
解答:解:(1)F(1,0),∴a2-b2=1,A(a,0),
设直线l:x=a+my代入y2=4x中,
整理得y2-4my-4a=0.设M(x1,y1),N(x2,y2),
则
,
又∵?y12=4x1,y22=4x2,
∴
,
由OM⊥ON得
,
解得a=4或a=0(舍),得b2=15
所以椭圆E的方程为
.
(2)椭圆E的左顶点B(-4,0),所以点Q(-4,y2).易证M,O,Q三点共线.
(I)当QM为等腰△QMN的底边时,由于ON⊥OM,∴O是线段MQ的中点,
∴
,所以m=0,即直线MN的方程为x=4;
(II)当QN为等腰△QMN的底边时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/6.png)
又∵?y1y2=-16,
解得
,
或![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/9.png)
∴
,
所以直线MN的方程为
,即
;
综上,当△QMN为等腰三角形时,直线MN的方程为x=4或
.
点评:本题主要考查了直线与圆锥曲线的综合问题.解题的关键是充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/0.png)
(2)先看当QM为等腰△QMN的底边时,进而推断出O是线段MQ的中点,求得m;再看当QN为等腰△QMN的底边时,根据y1y2=-16,求得m,则直线方程可得.
解答:解:(1)F(1,0),∴a2-b2=1,A(a,0),
设直线l:x=a+my代入y2=4x中,
整理得y2-4my-4a=0.设M(x1,y1),N(x2,y2),
则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/1.png)
又∵?y12=4x1,y22=4x2,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/2.png)
由OM⊥ON得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/3.png)
解得a=4或a=0(舍),得b2=15
所以椭圆E的方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/4.png)
(2)椭圆E的左顶点B(-4,0),所以点Q(-4,y2).易证M,O,Q三点共线.
(I)当QM为等腰△QMN的底边时,由于ON⊥OM,∴O是线段MQ的中点,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/5.png)
(II)当QN为等腰△QMN的底边时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/6.png)
又∵?y1y2=-16,
解得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/9.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/10.png)
所以直线MN的方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/12.png)
综上,当△QMN为等腰三角形时,直线MN的方程为x=4或
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212840086052190/SYS201310232128400860521020_DA/13.png)
点评:本题主要考查了直线与圆锥曲线的综合问题.解题的关键是充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目