题目内容

15.已知θ是锐角,当$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$取得最小值时,sinθ=(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

分析 原式变形后,利用多项式乘以多项式法则计算,利用基本不等式求出取得最小值时sinθ的值即可.

解答 解:$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$=($\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$)(sin2θ+cos2θ)=5+$\frac{co{s}^{2}θ}{si{n}^{2}θ}$+$\frac{4si{n}^{2}θ}{co{s}^{2}θ}$≥5+2$\sqrt{4}$=9,
当且仅当$\frac{co{s}^{2}θ}{si{n}^{2}θ}$=4×$\frac{si{n}^{2}θ}{co{s}^{2}θ}$,即cos4θ=4sin4θ时,取等号,
∵θ为锐角,∴sinθ>0,cosθ>0,
此时sin2θ=$\frac{1}{3}$,即sinθ=$\frac{\sqrt{3}}{3}$.
故选:A.

点评 此题考查了同角三角函数基本关系的运用,以及基本不等式的应用,熟练掌握基本不等式是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网