题目内容
在数列{an}中,如果对任意的n∈N*,都有![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_ST/0.png)
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_ST/1.png)
③等差数列是常数列是成为比等差数列的充分必要条件;
(文)④数列{an}满足:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_ST/3.png)
(理)④数列{an}满足:a1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_ST/6.png)
【答案】分析:根据比等差数列的定义
(λ为常数),逐一判断①~④中的四个数列是否是比等差数列,即可得到答案.
解答:解:数列{Fn}满足F1=1,F2=1,F3=2,F4=3,F5=5,
-
=1,
-
=-
≠1,
则该数列不是比等差数列,
故①正确;
若数列{an}满足an=(n-1)•2n-1,
则
-
=
-
=
不为定值,
即数列{an}不是比等差数列,
故②错误;
③当等差数列为常数列0,0,0,0,…,0时,不能成为比等差数列,
故③错误;
(文)④∵数列{an}满足:
,
a1=2=
-1,
∴a2=4+4=8=
,
a3=64+16=80=3
-1.
由此猜想
.
用数学归纳法证明:
①当n=1时,a1=2=
-1,成立.
②假设当n=k时成立,即
,
则ak+1=(
)2+2(
)
=
-2×3
+1-2×
-2
=
-1,也成立,
∴此数列的通项为
-1.
∴
-
=
-
不是常数,
故{an}不是比等差数列,故④正确;
(理)④∵数列{an}满足:a1=
,且an=
,
∴a1=
=
,
a2=
=
=
,
=
=
.
由此猜想an=
.
用数学归纳法证明:
①当n=1时,a1=
=
,成立;
②假设n=k时,等式成立,即
,
则ak+1=
=
,也成立.
故此数列的通项为an=
,
∴
-
=
-
不是常数,
故{an}不是比等差数列,故④正确;
故答案为:①④.
点评:本题考查新定义,解题时应正确理解新定义,同时注意利用列举法判断命题为假,属于难题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/0.png)
解答:解:数列{Fn}满足F1=1,F2=1,F3=2,F4=3,F5=5,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/5.png)
则该数列不是比等差数列,
故①正确;
若数列{an}满足an=(n-1)•2n-1,
则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/10.png)
即数列{an}不是比等差数列,
故②错误;
③当等差数列为常数列0,0,0,0,…,0时,不能成为比等差数列,
故③错误;
(文)④∵数列{an}满足:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/11.png)
a1=2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/12.png)
∴a2=4+4=8=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/13.png)
a3=64+16=80=3
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/14.png)
由此猜想
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/15.png)
用数学归纳法证明:
①当n=1时,a1=2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/16.png)
②假设当n=k时成立,即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/17.png)
则ak+1=(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/19.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/22.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/23.png)
∴此数列的通项为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/24.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/28.png)
故{an}不是比等差数列,故④正确;
(理)④∵数列{an}满足:a1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/30.png)
∴a1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/32.png)
a2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/33.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/37.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/38.png)
由此猜想an=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/39.png)
用数学归纳法证明:
①当n=1时,a1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/40.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/41.png)
②假设n=k时,等式成立,即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/42.png)
则ak+1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/43.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/44.png)
故此数列的通项为an=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/45.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/46.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/47.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/48.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101431417521780/SYS201311031014314175217016_DA/49.png)
故{an}不是比等差数列,故④正确;
故答案为:①④.
点评:本题考查新定义,解题时应正确理解新定义,同时注意利用列举法判断命题为假,属于难题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目