题目内容
设正数a,b满足a+b=2,则当a= 时,
+
取得最小值.
1 |
2a |
a |
b |
分析:由于正数a,b满足a+b=2,可得
+
=
+
=
(a+b)(
+
)-1=
(
+2+
+
)-1,利用基本不等式即可.
1 |
2a |
a |
b |
1 |
2a |
2-b |
b |
1 |
2 |
1 |
2a |
2 |
b |
1 |
2 |
1 |
2 |
b |
2a |
2a |
b |
解答:解:∵正数a,b满足a+b=2,
∴
+
=
+
=
(a+b)(
+
)-1=
(
+2+
+
)-1≥
(
+2)-1=
,当且仅当b=2a=
时取等号,即
+
取得最小值
.
故当a=
时,
+
取得最小值.
故答案为:
.
∴
1 |
2a |
a |
b |
1 |
2a |
2-b |
b |
1 |
2 |
1 |
2a |
2 |
b |
1 |
2 |
1 |
2 |
b |
2a |
2a |
b |
1 |
2 |
5 |
2 |
5 |
4 |
4 |
3 |
1 |
2a |
a |
b |
5 |
4 |
故当a=
2 |
3 |
1 |
2a |
a |
b |
故答案为:
2 |
3 |
点评:本题考查了通过变形路基本不等式求解最小值问题,属于中档题.
练习册系列答案
相关题目
设正数a,b满足
(x2+ax-b)=4,则
=( )
lim |
x→2 |
lim |
n→∞ |
an+1+abn-1 |
an-1+2bn |
A、0 | ||
B、
| ||
C、
| ||
D、1 |