题目内容

对任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{xn}.
(1)若定义函数f(x)=
4x-2
x+1
,且输入x0=
49
65
,请写出数列{xn}的所有项;
(2)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{xn},试求输入的初始数据x0的值及相应数列{xn}的通项公式xn
(3)若定义函数f(x)=2x+3,且输入x0=-1,求数列{xn}的通项公式xn
(1)函数f(x)=
4x-2
x+1
的定义域D=(-∞,-1)∪(-1,+∞)…(1分)
x0=
49
65
代入可得x1=
11
19
,把x1=
11
19
代入可得x2=
1
5
,把x2=
1
5
代入可得x3=-1
因为x3=-1∉D,
所以数列{xn}只有三项:x1=
11
19
x2=
1
5
x3=-1
…(4分)
(2)若要产生一个无穷的常数列,则f(x)=xsinx=x在[0,2π]上有解,
即x(sinx-1)=0在[0,2π]上有解,则x=0或sinx=1,所以x=0或x=
π
2
…(6分)
即当x0=0或x0=
π
2
时,xn+1=xnsinxn=xn

故当x0=0时,xn=0;当x0=
π
2
时,xn=
π
2
.…(9分)
(3)f(x)=2x+3的定义域为R,…(10分)
若x0=-1,则x1=1,
则xn+1=f(xn)=2xn+3,所以xn+1+3=2(xn+3),…(12分)
所以数列{xn+3}是首项为4,公比为2的等比数列,
所以xn+3=4•2n-1=2n+1,所以xn=2n+1-3
即数列{xn}的通项公式xn=2n+1-3.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网