题目内容

定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则(  )

A.f(sin)<f(cos) B.f(sin1)>f(cos1)
C.f(cos)<f(sin) D.f(cos2)>f(sin2)

D.

解析试题分析:因为f(x)=f(x+2),所以f(x)的周期为2,所以当时,,
所以,所以函数f(x)在[-1,1]上是偶函数,并且当上是减函数,在上是增函数,又因为.
考点:函数的周期性,及函数的单调性,求函数的解析式.
点评:根据f(x)=f(x+2),确定函数f(x)的周期为2,然后可利用x∈[3,5]时,f(x)=2-|x-4|,求出的解析式,从而可确定f(x)在[-1,1]的图像及性质,然后据此可推断选项.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网