题目内容
经过点![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_ST/1.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_ST/2.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_ST/3.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_ST/4.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_ST/5.png)
【答案】分析:根据有相同的渐近线可设所求双曲线为
=λ (λ≠0),把点
代入,解得:λ的值,进而求出答案.
解答:解:由题意可得:设所求双曲线为
=λ (λ≠0),
把点M(2
,-2
),解得
=λ=-2,
∴所求的双曲线方程为
=-2,即
=1.
故选:D.
点评:本题考查双曲线的性质和应用,解题时要注意待定系数法的合理运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/1.png)
解答:解:由题意可得:设所求双曲线为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/2.png)
把点M(2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/5.png)
∴所求的双曲线方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225755661118103/SYS201311012257556611181005_DA/7.png)
故选:D.
点评:本题考查双曲线的性质和应用,解题时要注意待定系数法的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目