题目内容
以下四个命题中,正确命题的个数是 .①不共面的四点中,其中任意三点不共线;
②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;
③若直线a、b共面,直线a、c共面,则直线b、c共面;
④依次首尾相接的四条线段必共面.
【答案】分析:对于①,利用反证法说明,对于②,考虑若A、B、C共线的情形;对于③,根据共面不具有传递性进行判断;对于④,依据四边形四条边可以不在一个平面上进行判断.
解答:解析:①正确,可以用反证法证明:若其中任意三点共线,则四点必共面;
②不正确,从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;
③不正确,共面不具有传递性;
④不正确,因为此时所得的四边形四条边可以不在一个平面上.
故答案为:1
点评:本小题主要考查平面的基本性质及推论、确定平面的条件等基础知识,考查空间想象力、化归与转化思想.属于基础题.
解答:解析:①正确,可以用反证法证明:若其中任意三点共线,则四点必共面;
②不正确,从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;
③不正确,共面不具有传递性;
④不正确,因为此时所得的四边形四条边可以不在一个平面上.
故答案为:1
点评:本小题主要考查平面的基本性质及推论、确定平面的条件等基础知识,考查空间想象力、化归与转化思想.属于基础题.
练习册系列答案
相关题目