题目内容
5、观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )
分析:首先由给出的例子归纳推理得出偶函数的导函数是奇函数,
然后由g(x)的奇偶性即可得出答案.
然后由g(x)的奇偶性即可得出答案.
解答:解:由给出的例子可以归纳推理得出:
若函数f(x)是偶函数,则它的导函数是奇函数,
因为定义在R上的函数f(x)满足f(-x)=f(x),
即函数f(x)是偶函数,
所以它的导函数是奇函数,即有g(-x)=-g(x),
故选D.
若函数f(x)是偶函数,则它的导函数是奇函数,
因为定义在R上的函数f(x)满足f(-x)=f(x),
即函数f(x)是偶函数,
所以它的导函数是奇函数,即有g(-x)=-g(x),
故选D.
点评:本题考查函数奇偶性及类比归纳推理能力.
练习册系列答案
相关题目