题目内容
(重庆卷文20)如图(20)图, 为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二
面角的大小为,求:
(Ⅰ)点B到平面的距离;
(Ⅱ)异面直线l与AB所成的角(用反三角函数表示).
【解析】本题主要考查立体几何中的主干知识,如线线角、二面角等基础知识,考查空间想象能力、逻辑思维能力和运算能力。解题的关键是线面平行、三垂线定理等基础知识,本题属中等题。
【答案】(1)如答(20)图,过点B′作直线B′C∥A′A且使B′C=A′A.过点B作BD⊥CB′,交CB′的延长线于D.
由已知AA′⊥l,可得DB′⊥l,又已知BB′⊥l,故l⊥平面BB′D,得BD⊥l又因BD⊥CB′,从而BD⊥平面α,BD之长即为点B到平面α的距离.
因B′C⊥l且BB′⊥l,故∠BB′C为二面角α-l-β的平面角.由题意,∠BB′C=.因此在Rt△BB′D中,BB′=2,∠BB′D=π-∠BB′C=,BD=BB′·sinBB′D=.
(Ⅱ)连接AC、BC.因B′C∥A′A,B′C=A′A,AA′⊥l,知A′ACB′为矩形,故AC∥l.所以∠BAC或其补角为异面直线l与AB所成的角.
在△BB′C中,B′B=2,B′C=3,∠BB′C=,则由余弦定理,
BC=.
因BD平面,且DCCA,由三垂线定理知ACBC.
故在△ABC中,∠BCA=,sinBAC=.
因此,异面直线l与AB所成的角为arcsin
练习册系列答案
相关题目