题目内容

已知圆:x2+y2-4x-6y+12=0.
(1)求过点A(3,5)的圆的切线方程;
(2)点P(x,y)为圆上任意一点,求
yx
的最值.
分析:(1)先化成圆的标准方程求出圆心和半径,然后对过点A分斜率存在和不存在两种情况进行讨论.当斜率存在时根据圆心到直线的距离等于半径求出k的值,进而可得到切线方程.
(2)设
y
x
=k得到y=kx,然后转化为求满足条件的直线斜率的最值问题,又有当直线与圆相切时可取得最大与最小值,从而可得到答案.
解答:解:(1)由x2+y2-4x-6y+12=0可得到(x-2)2+(y-3)2=1,故圆心坐标为(2,3)
过点A(3,5)且斜率不存在的方程为x=3
圆心到x=3的距离等于d=1=r
故x=3是圆x2+y2-4x-6y+12=0的一条切线;
过点A且斜率存在时的直线为:y-5=k(x-3),即:y-kx+3k-5=0,根据圆心到切线的距离为半径,可得到:
r=1=
|3-2k+3k-5|
1+k2
化简可得到:
(k-2)2=1+k2∴k=
3
4

所以切线方程为:4y-3x-11=0.
过点A(3,5)的圆的切线方程为:4y-3x-11=0,x=3
(2)由题意知点P(x,y)为圆上任意一点,故可设
y
x
=k,即要求k的最大值与最小值
即y=kx中的k的最大值与最小值
易知当直线y=kx与圆相切时可取得最大与最小值,此时
d=1=
|2k-3|
1+k2
,整理可得到:3k2-12k+8=0
得到k=
6+2
3
3
6-2
3
3

y
x
的最大值为
6+2
3
3
,最小值为
6-2
3
3
点评:本题主要考查圆的切线方程、定点到圆的距离的最值问题.考查基础知识的综合运用和计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网