题目内容
【题目】在平面直角坐标系中,已知圆:,点,,点在圆上,.
(1)求圆的方程;
(2)直线与圆交于,两点(点在轴上方),点是抛物线上的动点,点为的外心,求线段长度的最大值,并求出当线段长度最大时,外接圆的标准方程.
【答案】(1)(2)的最大值为;
【解析】
(1)设,根据得到,转化为坐标表示,得到,即,从而得到圆的方程;
(2)由得到、的坐标,表示出线段的中垂线,令,得到的外心的坐标,由在抛物线上得,从而得到,再由基本不等式,得到其最大值,确定出点坐标,再求出外接圆的半径,得到所求圆的方程.
解:(1)设,则,
因为,所以
所以,
由上式得:,所以,所以圆的方程为.
(2)把代入圆的方程得,所以,,
作出线段的中垂线,则的外心为直线与轴的交点.
直线的方程为:.
当时,.
因为点在抛物线上,所以
所以.
由得,
所以,
.
当且仅当时,即时取到最大值.
此时点坐标为,所以外接圆的半径,
所以外接圆的标准方程为.
【题目】为了增强学生的环境意识,某中学随机抽取了50名学生举行了一次环保知识竞赛,本次竞赛的成绩(得分均为整数,满分100分)整理,制成下表:
成绩 | ||||||
频数 | 2 | 3 | 14 | 15 | 14 | 4 |
(1)作出被抽查学生成绩的频率分布直方图;
(2)若从成绩在中选一名学生,从成绩在中选出2名学生,共3名学生召开座谈会,求组中学生和组中学生同时被选中的概率?
【题目】某市实验中学数学教研组,在高三理科一班进行了一次“采用两种不同方式进行答卷”的考试实验,第一种做卷方式:按从前往后的顺序依次做;第二种做卷方式:先做简单题,再做难题.为了比较这两种做卷方式的效率,选取了名学生,将他们随机分成两组,每组人.第一组学生用第一种方式,第二组学生用第二种方式,根据学生的考试分数(单位:分)绘制了茎叶图如图所示.
若分(含分)以上为优秀,根据茎叶图估计两种做卷方式的优秀率;
设名学生考试分数的中位数为,根据茎叶图填写下面的列联表:
超过中位数的人数 | 不超过中位数的人数 | 合计 | |
第一种做卷方式 | |||
第一种做卷方式 | |||
合计 |
根据列联表,能否有的把握认为两种做卷方式的效率有差异?
附:,.