题目内容
(14分)已知等差数列满足;又数列满足+…+,其中是首项为1,公比为的等比数列的前项和。
(I)求的表达式;
(Ⅱ)若,试问数列中是否存在整数,使得对任意的正整数都有成立?并证明你的结论。
解析:(I)设的首项为,公差为d,于是由
解得
(Ⅱ)
由 ①
得 ②
①―②得 即
当时,,当时,
于是
设存在正整数,使对恒成立
当时,,即
当时,
当时,当时,,当时,
存在正整数或8,对于任意正整数都有成立。
练习册系列答案
相关题目
题目内容
(14分)已知等差数列满足;又数列满足+…+,其中是首项为1,公比为的等比数列的前项和。
(I)求的表达式;
(Ⅱ)若,试问数列中是否存在整数,使得对任意的正整数都有成立?并证明你的结论。
解析:(I)设的首项为,公差为d,于是由
解得
(Ⅱ)
由 ①
得 ②
①―②得 即
当时,,当时,
于是
设存在正整数,使对恒成立
当时,,即
当时,
当时,当时,,当时,
存在正整数或8,对于任意正整数都有成立。