题目内容
设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的( )A.充要条件
B.充分而不必要的条件
C.必要而不充分的条件
D.既不充分也不必要的条件
【答案】分析:由题意a,b是平面α内两条不同的直线,l是平面α外的一条直线,若a∥b,l与a垂直,且斜交,推不出l一定垂直平面α,利用此对命题进行判断;
解答:解:∵,b是平面α内两条不同的直线,l是平面α外的一条直线,“
∵l⊥a,l⊥b”,若a∥b,l可以与平面α斜交,推不出l⊥α,
若“l⊥α,∵a,b是平面α内两条不同的直线,l是平面α外的一条直线,
∴l⊥a,l⊥b,
∴“l⊥a,l⊥b”是“l⊥α”的必要而不充分的条件,
故选C.
点评:此题以平面立体几何为载体,考查了线线垂直和线面垂直的判定定了,还考查了必要条件和充分条件的定义,是一道基础题.
解答:解:∵,b是平面α内两条不同的直线,l是平面α外的一条直线,“
∵l⊥a,l⊥b”,若a∥b,l可以与平面α斜交,推不出l⊥α,
若“l⊥α,∵a,b是平面α内两条不同的直线,l是平面α外的一条直线,
∴l⊥a,l⊥b,
∴“l⊥a,l⊥b”是“l⊥α”的必要而不充分的条件,
故选C.
点评:此题以平面立体几何为载体,考查了线线垂直和线面垂直的判定定了,还考查了必要条件和充分条件的定义,是一道基础题.
练习册系列答案
相关题目