题目内容
某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
1. 版本 | 2. 人教A版 | 3. 人教B版 | ||
4. 性别 | 5. 男教师 | 6. 女教师 | 7. 男教师 | 8. 女教师 |
9. 人数 | 10. 6 | 11. 3 | 12. 4 | 13. 2 |
(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量
的分布列和数学期望
.
(I)(II)
解析:
(Ⅰ)从15名教师中随机选出2名共种选法, …………………………2分
所以这2人恰好是教不同版本的男教师的概率是. …………………5分
(Ⅱ)由题意得
;
;
.………………………………………………………………9分
故的分布列为
14. | 15. 0 | 16. 1 | 17. 2 | 18. |
19. | 20. | 21. | 22. |
所以,数学期望.
![](http://thumb.zyjl.cn/images/loading.gif)
版本 | 人教A版 | 人教B版 | ||
性别 | 男教师 | 女教师 | 男教师 | 女教师 |
人数 | 6 | 3 | 4 | 2 |
(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为ξ,求随机变量ξ的分布列和数学期望Eξ.
(08年朝阳区综合练习一文)(13分)
某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本 | 人教A版 | 人教B版 | ||
性别 | 男教师 | 女教师 | 男教师 | 女教师 |
人数 | 6 | 3 | 4 | 2 |
(Ⅰ)从这15名教师中随机选出2名,求2人恰好是教不同版本的男教师的概率;
(Ⅱ)培训活动随机选出3名教师发言,求使用不同版本教材的女教师各至少一名的概率.
(08年朝阳区综合练习一)(本小题满分13分)
某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本 | 人教A版 | 人教B版 | ||
性别 | 男教师 | 女教师 | 男教师 | 女教师 |
人数 | 6 | 3 | 4 | 2 |
(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量
的分布列和数学期望
.
某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本 | 人教A版 | 人教B版 | ||
性别 | 男教师 | 女教师 | 男教师 | 女教师 |
人数 | 6 | 3 | 4 | 2 |
(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量
的分布列和数学期望
.