题目内容
在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:
(I)三棱柱的侧面展开图的对角线长;
(II)该最短路线的长及的值;
(III)平面与平面ABC所成二面角(锐角)的大小
解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形
其对角线长为.
(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为
.
,,
故.
(III)连接DB,,则DB就是平面与平面ABC的交线
在中,
又,
由三垂线定理得.
就是平面与平面ABC所成二面角的平面角(锐角),
侧面是正方形,
.
故平面与平面ABC所成的二面角(锐角)为.
练习册系列答案
相关题目