题目内容

(2013•镇江二模)如图,在△ABC中,B=
π
4
,角A的平分线AD交BC于点D,设∠BAD=α,sinα=
5
5

(1)求sin∠BAC和sinC;
(2)若
BA
BC
=28
,求AC的长.
分析:(1)利用三角函数平方关系、倍角公式、诱导公式、两角和的正弦公式即可得出;
(2)利用正弦定理、向量的数量积即可得出.
解答:解:(1)∵α∈(0,
π
2
)
sinα=
5
5
=
1
5

cosα=
1-sin2α
=
2
5

则sin∠BAC=sin2α=2sinαcosα=2×
1
5
×
2
5
=
4
5

∴cos∠BAC=cos2α=2cos2α-1=
4
5
-1=
3
5

sinC=sin[π-(
π
4
+2α)]=sin(
π
4
+2α)

=
2
2
sin2α+
2
2
cos2α
=
2
2
×
4
5
+
2
2
×
3
5
=
7
2
10

(2)由正弦定理得
AB
sinC
=
BC
sin∠BAC
,∴
AB
7
2
10
=
BC
4
5
,∴AB=
7
2
8
BC,
BA
BC
=28
,∴AB•BC•
2
2
=28

由上两式解得BC=4
2

又由
AC
sinB
=
BC
sin∠BAC
,得
AC
2
2
=
BC
4
5
,解得AC=5.
点评:本题综合考查了三角函数平方关系、倍角公式、诱导公式、两角和的正弦公式、正弦定理、向量的数量积等知识与方法.需要较强的推理能力和计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网