题目内容

(2010•湖北模拟)已知数列|an|满足:an=n+1+
8
7
an+1
,且存在大于1的整数k使ak=0,m=1+
8
7
a1

(1)用k表示m(化成最简形式);
(2)若m是正整数,求k与m的值;
(3)当k大于7时,试比较7(m-49)与8(k2-k-42)的大小.
分析:(1)利用数列|an|满足:an=n+1+
8
7
an+1
,且存在大于1的整数k使ak=0,m=1+
8
7
a1
.逐步迭代可得m=1+2×
8
7
+3×(
8
7
)2+…+k×(
8
7
)k-1
,再写一式,两式相减,可求;
(2)由k>1,m是正整数,可知|k-7|<7n-1,故有k-7=0,所以可求k=7,m=49;
(3)根据(1),表示出7(m-49),进而利用二项式定理可证.
解答:解:(1)m=1+
8
7
a1=1+
8
7
(2+
8
7
a2

=1+2×
8
7
+(
8
7
)2a2

=1+2×
8
7
+(
8
7
)2[3+
8
7
a3
]
=1+2×
8
7
+3×(
8
7
)2+…+k×(
8
7
)k-1
               ①…(2分)
8
7
m=1×
8
7
+2×(
8
7
)2+3×(
8
7
)3+…+k×(
8
7
)k
   ②
由①-②得-
1
7
m=1+1×
8
7
+(
8
7
)2+…+(
8
7
)k-1-k×(
8
7
)k
…(4分)
∴-
1
7
m=
(
8
7
)
k
-1
8
7
-1
-k×(
8
7
)k

∴m=49+(k-7)×
8k
7k-1
…(6分)
(2)由k>1知|k-7|<7n-1
又∵m∈N*故此有k-7=0
故k=7,m=49…(9分)
(3)∵m=49+(k-7)×
1
7k-1

∴7(m-49)=56(k-7)•(1+
1
7
)
k-1

=56(k-7)[1+Ck-11
1
7
+
C
2
k-1
1
72
+…+
C
k-1
k-1
1
7k-1
]>56(k-7)[1+
C
1
k-1
+
1
7

>8(k-7)(k+6)
=8(k2-k-42)
∴7(m-49)>8(k2-k-42)…(14分)
点评:本题以数列为依托,综合考查数列与不等式,借助于错位相减法考查数列求和,考查利用二项式定理比较大小.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网