题目内容

某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=,其中n=a+b+c+d)
【答案】分析:(1)根据条件ξ的取值为2,3,4,分别求出P(ξ=2),P(ξ=3),P(ξ=4).由此能求出ξ的分布列和数学期望Eξ.
(2)根据条件列出列联表,求出K2和P(K2≥5.024)=0.025,因此根据这次抽查数据在犯错误的概率不超过0.025的前提下,可以认为物理成绩优秀与否和数学成绩优秀与否有关系.
解答:解:(1)根据条件ξ的取值为2,3,4,
而且在20人中,数学成绩优秀的6人,不优秀的14人,所以有
P(ξ=2)==
P(ξ=3)==
P(ξ=4)==
所以ξ的分布列为
ξ234
P
(6分)
数学期望Eξ=2×+3×+4×=2.6.(8分)
(2)根据条件列出列联表如下:
物理优秀物理不优秀合计
数学优秀426
数学不优秀21214
合计61420
所以≈5.4875>5.024.
又P(K2≥5.024)=0.025,
因此根据这次抽查数据在犯错误的概率不超过0.025的前提下,
可以认为物理成绩优秀与否和数学成绩优秀与否有关系.(12分)
点评:本小题主要考查统计与概率的相关知识,具体涉及到随机变量的分布列、数学期望的求法和统计案例中独立性检验等知识内容.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网