题目内容

已知双曲线W:
x2
a2
-
y2
b2
=1(a>0,b>0)
,其中一个焦点到相应准线间的距离为
3
2
,渐近线方程为y=±
3
x

(1)求双曲线W的方程
(2)过点Q(0,1)的直线l交双曲线W与A,B两个不同的点,若坐标原点O在以线段AB为直径的圆外,求直线l的斜率的取值范围.
分析:(1)利用一个焦点到相应准线间的距离为
3
2
,渐近线方程为y=±
3
x
,建立方程组,求得几何量,即可求得双曲线的方程;
(2)设出直线方程与双曲线方程联立,利用韦达定理,结合向量的数量积公式,即可得到结论.
解答:解:(1)由已知可得,
c-
a2
c
=
3
2
b
a
=
3
c2=a2+b2
,∴a=1,b=
3

∴双曲线W的方程为x2-
y2
3
=1

(2)易知直线斜率存在,设AB的方程为y=kx+1,A(x1,y1),B(x2,y2),
直线方程与双曲线方程联立,消去y可得(3-k2)x2-2kx-4=0
∴x1+x2=
2k
3-k2
,x1x2=
-4
3-k2

3-k2≠0
4k2+16(3-k2)>0
,可得k2<4且k2≠3
∵坐标原点O在以线段AB为直径的圆外,
OA
OB
>0
∴x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=
3k2+1
k2-3
>0
∴k2>3
∴3<k2<4
∴直线l的斜率范围为(-2,-
3
)∪(
3
,2).
点评:本题考查双曲线的标准方程,考查直线与双曲线的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网