题目内容

平面内有四个点O、A、B、C,记
OA
=
a
OB
=
b
OC
=
c
,向量
a
b
c
 满足
a
+
b
c
=0,其中λ为实数.
(1)若点C是线段AB的中点,求λ的值;
(2)当λ=1时,且
a
b
=
b
c
=
c
a
=-1,试判断△ABC的形状.
分析:(1)利用向量的中点坐标公式即可求出;
(2)利用已知条件和向量的运算先证明
a
b
c
的模相等,再利用三角形的全等即可得到三角形的形状.
解答:解:(1)∵点C是线段AB的中点,∴
OC
=
1
2
(
OA
+
OB
)
,∴
a
+
b
-2
c
=
0
,又
a
+
b
c
=
0
,∴λ=-2.
(2)当λ=1时,则
a
+
b
+
c
=
0
,∴
b
=-(
a
+
c
)

a
b
=
b
c
,∴
b
•(
a
-
c
)=0
,∴-(
a
+
c
)•(
a
-
c
)=0
,∴
a
2
=
c
2
,∴|
a
|=|
c
|

同理|
b
|=|
c
|

a
b
=
b
c
=
c
a
=-1
a
b
>=<
b
c
=
c
a

∴△OAB≌△OBC≌OCA,∴AB=BC=CA.
∴△ABC是等边三角形.
点评:熟练掌握向量的中点坐标公式、向量的线性运算性质及其模的计算公式、三角形全等的判定是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网