题目内容

(本题满分12分)若定义在上的函数同时满足下列三个条件:

①对任意实数均有成立;

; ③当时,都有成立。

(1)求的值;

(2)求证:上的增函数

(3)求解关于的不等式.

 

【答案】

(1)=0, ;(2)证明:见解析;(3).

【解析】本试题主要是考查了函数的单调性的证明,以及函数与不等式的求解,赋值法求解函数的值。

(1)令=0,令,得

(2),则;利用已知关系式得到证明

(3)在第二问的基础上可知得到,转换不等式得到

,进而求解得到结论。

解:(1)令=0,令,得

(2)证明:设,则,故,为R上的增函数

(3)由已知得原不等式转化为,结合为R上的增函数得:

,解得  .故原不等式的解集为.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网