题目内容
(04年北京卷理)(14分)
如图,在正三棱柱ABC=A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N,求:
(I)该三棱柱的侧面展开图的对角线长;
(II)PC和NC的长;
(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)。
解析:(I)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为。
(II)如图1,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,点P运动到点P1的位置,连接MP1,则MP1就是由点P沿棱柱侧面经过棱CC1到点M的最短路线。
设PC=x,则P1C=x在Rt△MAP1中,由匀股定理得(3+x)2+22=29,
求得x=2.
∴PC=P1C=2.
∵,
∴NC=
(III)如图2,连接PP1,则PP1就是平面NMP与平面ABC的交线,作NH⊥PP1于H,又CC1⊥平面ABC,连结CH,由三垂线定理得,CH⊥PP1.
∴∠NHC就是平面NMP与平面ABC所成二面角的平面角(锐角).
在Rt△PHC中,∵∠PCH=∠PCP1=60°,
∴CH==1
在Rt△NCH中,tg∠NHC=,
故平面NMP与平面ABC所成二面角(锐角)的大小为arctg.
练习册系列答案
相关题目