题目内容
已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是
- A.0
- B.1
- C.2
- D.3
D
解:因为f′(x)=3x2-a,
∵函数f(x)=x3-ax在[1,+∞)上是单调增函数,
∴在[1,+∞)上,f′(x)≥0恒成立,
即a≤3x2在[1,+∞)上恒成立,
∴a≤3,
故答案为:3.
解:因为f′(x)=3x2-a,
∵函数f(x)=x3-ax在[1,+∞)上是单调增函数,
∴在[1,+∞)上,f′(x)≥0恒成立,
即a≤3x2在[1,+∞)上恒成立,
∴a≤3,
故答案为:3.
练习册系列答案
相关题目