题目内容
已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤},求函数g(x)=-3x2+3x-4(x∈B)的最大值.
g(x)max=g(1)=-4.
解析:
由且x≠0,故0<x<,
又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2<x<,即A={x|2<x<},
∴B=A∪{x|1≤x≤}={x|1≤x<},又g(x)=-3x2+3x-4=-3(x-)2-知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.
练习册系列答案
相关题目