题目内容

在数列中,

(Ⅰ)证明数列是等比数列;

(Ⅱ)求数列的前项和

(Ⅲ)证明不等式,对任意皆成立.

本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.

(Ⅰ)证明:由题设,得

,所以数列是首项为,且公比为的等比数列.

(Ⅱ)解:由(Ⅰ)可知,于是数列的通项公式为

所以数列的前项和

(Ⅲ)证明:对任意的

所以不等式,对任意皆成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网