题目内容
22已知函数,若方程
有且只有两个相异根0和2,且
(1)求函数的解析式。
(2)已知各项不为1的数列{an}满足,求数列通项an。
(3)如果数列{bn}满足,求证:当
时,恒有
成立。
解析:
解:(1)设
∵0,2是方程的根 ∴
∴ ∴
由得
∵
∴
∴
(2)由已知整理得
∴ 二式相减得
若则当n=1时,
(舍0)
则不合题意舍
若则{an}为首项-1,公差为-1的等差数列
满足
∴
(3)由
∴时,
∴
若显然
成立
若,
时
则
∴{bn}在时单调递减
∵
∴
![](http://thumb.zyjl.cn/images/loading.gif)
己知在锐角ΔABC中,角所对的边分别为
,且
(I )求角大小;
(II)当时,求
的取值范围.
20.如图1,在平面内,是
的矩形,
是正三角形,将
沿
折起,使
如图2,
为
的中点,设直线
过点
且垂直于矩形
所在平面,点
是直线
上的一个动点,且与点
位于平面
的同侧。
(1)求证:平面
;
(2)设二面角的平面角为
,若
,求线段
长的取值范围。
![]() |
21.已知A,B是椭圆的左,右顶点,
,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线
于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数
,
(Ⅰ)若在
上存在最大值与最小值,且其最大值与最小值的和为
,试求
和
的值。
(Ⅱ)若为奇函数:
(1)是否存在实数,使得
在
为增函数,
为减函数,若存在,求出
的值,若不存在,请说明理由;
(2)如果当时,都有
恒成立,试求
的取值范围.