题目内容
函数y=lg(3-4x+x2)的定义域为M,当x∈M时,求 f(x)=2x+2-3×4x的最值.
解:由3-4x+x2>0,得x>3或x<1,
∴M={x|x>3或x<1},
f(x)=-3×(2x)2+2x+2=-3(2x-)2+.
∵x>3或x<1,∴2x>8或0<2x<2,
∴当2x=,即x=log2时, f(x)最大,最大值为, f(x)没有最小值.
∴M={x|x>3或x<1},
f(x)=-3×(2x)2+2x+2=-3(2x-)2+.
∵x>3或x<1,∴2x>8或0<2x<2,
∴当2x=,即x=log2时, f(x)最大,最大值为, f(x)没有最小值.
略
练习册系列答案
相关题目