ÌâÄ¿ÄÚÈÝ
| MF |
| FB |
£¨1£©Èô¦Ë=1£¬ÇóÖ±ÏßlбÂÊ
£¨2£©ÈôµãA¡¢BÔÚxÖáÉϵÄÉäÓ°·Ö±ðΪA1£¬B1ÇÒ|
| B1F |
| OF |
| A1F |
£¨3£©ÉèÒÑÖªÅ×ÎïÏßΪC1£ºy2=x£¬½«ÆäÈÆ¶¥µã°´ÄæÊ±Õë·½ÏòÐýת90¡ã±ä³ÉC1¡ä£®Ô²C2£ºx2+£¨y-4£©2=1µÄÔ²ÐÄΪµãN£®ÒÑÖªµãPÊÇÅ×ÎïÏßC1¡äÉÏÒ»µã£¨ÒìÓÚԵ㣩£¬¹ýµãP×÷Ô²C2µÄÁ½ÌõÇÐÏߣ¬½»Å×ÎïÏßC¡ä1ÓÚT£¬S£¬Á½µã£¬Èô¹ýN£¬PÁ½µãµÄÖ±Ïßl´¹Ö±ÓÚTS£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö£º£¨1£©ÏÈÈ·¶¨p=¦Ë£¨x2-
£©£¬½ø¶øÇó³öBµÄ×ø±ê£¬¼´¿ÉÇóÖ±ÏßlµÄбÂÊ£»
£¨2£©Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÇóµÃA1¡¢B1µÄºá×ø±ê£¬¸ù¾Ý|
|£¬|
|£¬2|
|³ÉµÈ²îÊýÁУ¬¿ÉµÃ2|
|=|
|+2|
|£¬´Ó¶ø¿ÉµÃx2-2x1=
£¬ÓÉ´Ë¿ÉÇó¦ËµÄÖµ£»
£¨3£©Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³Ì£¬¿ÉµÃPS£¬PTµÄбÂÊÊÇ·½³ÌµÄÁ½¸ù£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏòÁ¿µÄÊýÁ¿»ý£¬¼´¿ÉµÃµ½½áÂÛ£®
| p |
| 2 |
£¨2£©Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÇóµÃA1¡¢B1µÄºá×ø±ê£¬¸ù¾Ý|
| B1F |
| OF |
| A1F |
| OF |
| B1F |
| A1F |
| p |
| 2 |
£¨3£©Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³Ì£¬¿ÉµÃPS£¬PTµÄбÂÊÊÇ·½³ÌµÄÁ½¸ù£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏòÁ¿µÄÊýÁ¿»ý£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£ºÒÀÌâÒâÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßlµÄбÂÊΪk£¬k£¾0£¬MµÄ×Ý×ø±êΪy0£¬
ÔòF£¨
£¬0£©×¼Ïß·½³ÌΪx=-
Ö±ÏßlµÄ·½³ÌΪy=k£¨x-
£©£¬M£¨-
£¬y0£©£¬y2£¾0
¡ß
=¦Ë
£¬¡à£¨p£¬-y0£©=¦Ë£¨x2-
£¬y0£©£¬¹Êp=¦Ë£¨x2-
£©
£¨1£©Èô¦Ë=1£¬ÓÉp=¦Ë£¨x2-
£©£¬y22=2px2£¬y2£¾0£¬µÃx2=
£¬y2=
p£¬
¡àB£¨
£¬
p£©
¡àÖ±ÏßlµÄбÂÊk=
=
£»
£¨2£©Ö±ÏßlµÄ·½³Ì´úÈëy2=2px£¬ÏûÈ¥y£¬¿ÉµÃk2x2-£¨k2p+2p£©x+
=0£¬Ôòx1x2=
¡ßx2=
+
£¬¡àx1=
=
¡ß|
|£¬|
|£¬2|
|³ÉµÈ²îÊýÁÐ
¡à2|
|=|
|+2|
|£¬
¡à(x2-
)+2(
-x1)=p
¡àx2-2x1=
½«x2=
+
ºÍx1=
´úÈëÉÏʽµÃ
=
£¬¡à¦Ë=2£»
£¨3£©ÉèP£¨x0£¬x02£©£¬S£¨x1£¬x12£©£¬T£¨x2£¬x22£©£¬ÓÉÌâÒâµÃx0¡Ù0£¬x0¡Ù¡À1£¬x1¡Ùx2£®
Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³ÌΪy-x02=k£¨x-x0£©£¬¼´y=kx-kx0+x02£®¢Ù
Ôò
=1£¬
¼´£¨x02-1£©k2+2x0£¨4-x02£©k+£¨x02-4£©2-1=0£®
ÉèPS£¬PTµÄбÂÊΪk1£¬k2£¨k1¡Ùk2£©£¬Ôòk1£¬k2ÊÇÉÏÊö·½³ÌµÄÁ½¸ù£¬ËùÒÔ
k1+k2=
£¬k1k2=
£®
½«¢Ù´úÈëy=x2£¬µÃx2-kx+kx0-x02=0£¬
ÓÉÓÚx0ÊÇ´Ë·½³ÌµÄ¸ù£¬¹Êx1=k1-x0£¬x2=k2-x0£¬
ËùÒÔkST=
=x1+x2=k1+k2-2x0=
-2x0£¬kNP=
£®
ÓÉMP¡ÍAB£¬µÃkNP•kST=[
-2x0]•
=-1£¬½âµÃx02=
£¬
¼´µãPµÄ×ø±êΪ£¨¡À
£¬
£©£¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
x+4£®
ÔòF£¨
| p |
| 2 |
| p |
| 2 |
Ö±ÏßlµÄ·½³ÌΪy=k£¨x-
| p |
| 2 |
| p |
| 2 |
¡ß
| MF |
| FB |
| p |
| 2 |
| p |
| 2 |
£¨1£©Èô¦Ë=1£¬ÓÉp=¦Ë£¨x2-
| p |
| 2 |
| 3p |
| 2 |
| 3 |
¡àB£¨
| 3p |
| 2 |
| 3 |
¡àÖ±ÏßlµÄбÂÊk=
| ||||
|
| 3 |
£¨2£©Ö±ÏßlµÄ·½³Ì´úÈëy2=2px£¬ÏûÈ¥y£¬¿ÉµÃk2x2-£¨k2p+2p£©x+
| k2p2 |
| 4 |
| p2 |
| 4 |
¡ßx2=
| p |
| ¦Ë |
| p |
| 2 |
| p2 |
| 4x2 |
| ¦Ëp |
| 2¦Ë+4 |
¡ß|
| B1F |
| OF |
| A1F |
¡à2|
| OF |
| B1F |
| A1F |
¡à(x2-
| p |
| 2 |
| p |
| 2 |
¡àx2-2x1=
| p |
| 2 |
½«x2=
| p |
| ¦Ë |
| p |
| 2 |
| ¦Ëp |
| 2¦Ë+4 |
| 1 |
| ¦Ë |
| ¦Ë |
| ¦Ë+2 |
£¨3£©ÉèP£¨x0£¬x02£©£¬S£¨x1£¬x12£©£¬T£¨x2£¬x22£©£¬ÓÉÌâÒâµÃx0¡Ù0£¬x0¡Ù¡À1£¬x1¡Ùx2£®
Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³ÌΪy-x02=k£¨x-x0£©£¬¼´y=kx-kx0+x02£®¢Ù
Ôò
| |kx0+4-x02| | ||
|
¼´£¨x02-1£©k2+2x0£¨4-x02£©k+£¨x02-4£©2-1=0£®
ÉèPS£¬PTµÄбÂÊΪk1£¬k2£¨k1¡Ùk2£©£¬Ôòk1£¬k2ÊÇÉÏÊö·½³ÌµÄÁ½¸ù£¬ËùÒÔ
k1+k2=
| 2x0(x02-4) |
| x02-1 |
| (x02-4)2-1 |
| x02-1 |
½«¢Ù´úÈëy=x2£¬µÃx2-kx+kx0-x02=0£¬
ÓÉÓÚx0ÊÇ´Ë·½³ÌµÄ¸ù£¬¹Êx1=k1-x0£¬x2=k2-x0£¬
ËùÒÔkST=
| x12-x22 |
| x1-x2 |
| 2x0(x02-4) |
| x02-1 |
| x02-4 |
| x0 |
ÓÉMP¡ÍAB£¬µÃkNP•kST=[
| 2x0(x02-4) |
| x02-1 |
| x02-4 |
| x0 |
| 23 |
| 5 |
¼´µãPµÄ×ø±êΪ£¨¡À
|
| 23 |
| 5 |
3
| ||
| 115 |
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éµÈ²îÊýÁеÄÐÔÖÊ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿