题目内容
一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:
(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;
(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.
【答案】
(Ⅰ);(Ⅱ)
【解析】
试题分析:1.本题以学生熟悉的背景设题,将得分与选择对、选错联系起来,感受随机事件与概率.因此,解题首先是要读懂题意.善于在熟悉的情境中理解题意,这是解概率题的关键.2.概率问题往往涉及到分类计算,这是由于分布列的特点需要分类进行计算.另由于选择各题时相对独立,独立事件也需要分类计算.3.概率题要求计算要准确,全功尽弃.
试题解析:设选对“全然不理解题意”的试题的选项为事件,选对“可判断有一个选项不符合题目要求”
试题的选项为事件,选对“可判断有两个选项不符合题目要求”试题的选项为事件,根据题意
,,.
(Ⅰ)在这次考试中,该考生选择题得分的概率;
(Ⅱ)随机变量可能的取值为,,,,,根据题意得
,
,
,
,
.
∴的数学期望.
考点:概率,随机变量分布列、数学期望的计算.
练习册系列答案
相关题目