题目内容

已知点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直线上,点A1(x1,0),A2(x2,0),A3(x3,0),…,An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1),对于任意n∈N*,点An,Bn,An+1构成以∠Bn为顶角的等腰三角形,设△AnBnAn+1的面积为Sn
(1)证明:数列{yn}是等差数列;
(2)求S2n-1(用a和n的代数式表示);
(3)设数列前n项和为Tn,判断Tn(n∈N*)的大小,并证明你的结论.
【答案】分析:(1)由数列的函数特性,要证明数列{yn}是等差数列,我们可以根据已知点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直线上,进而给出数列{yn}的通项公式,利用通项公式法证明.
(2)由已知易得,进一步可以证明数列{xn}所有的奇数项成等差数列,所有的偶数项也成等差数列,由等差数列的性质易得A2n-1(2n+a-2,0),A2n(2n-a,0),结合(1)的结论和三角形面积公式,即可给出S2n-1的表达式.
(3)由(2)的结论,易给出数列前n项和为Tn的表达式,利用裂项求和法,化简Tn的表达式再与进行比较,即可得到结论.
解答:解:(1)由于点B1(1,y1),B2(2,y2),,Bn(n,yn)(n∈N*)在直线上,

因此,所以数列{yn}是等差数列;
(2)由已知有,那么xn+xn+1=2n,同理xn+1+xn+2=2(n+1),
以上两式相减,得xn+2-xn=2,
∴x1,x3,x5,…,x2n-1,成等差数列;x2,x4,x6,…,x2n,也成等差数列,
∴x2n-1=x1+(n-1)×2=2n+a-2,x2n=x2+(n-1)×2=(2-a)+(n-1)×2=2n-a,
点A2n-1(2n+a-2,0),A2n(2n-a,0),
则|A2n-1A2n|=2(1-a),|A2nA2n+1|=2a,


(3)由(2)得:

而S2nS2n-1>0,则




由于

,从而
同理:

以上n+1个不等式相加得:

从而
点评:要判断一个数列是否为等差(比)数列,我们常用如下几种办法:①定义法,判断数列连续两项之间的差(比)是否为定值;②等差(比)中项法,判断是否每一项都是其前一项与后一项的等差(比)中项;③通项公式法,判断其通项公式是否为一次(指数)型函数;④前n项和公式法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网