题目内容

已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则(  )
A.当k=1时,f(x)在x=1处取得极小值
B.当k=1时,f(x)在x=1处取得极大值
C.当k=2时,f(x)在x=1处取得极小值
D.当k=2时,f(x)在x=1处取得极大值

精英家教网
当k=2时,函数f(x)=(ex-1)(x-1)2
求导函数可得f'(x)=ex(x-1)2+2(ex-1)(x-1)=(x-1)(xex+ex-2),
∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当
1
2
<x<1时,f'(x)<0,故函数f(x)在(1,+∞)上是增函数;
在(
1
2
,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网