题目内容
.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?
260
完成该件事可分步进行.
涂区域1,有5种颜色可选.
涂区域2,有4种颜色可选.
涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.
所以共有5×4×(1×4+3×3)=260种涂色方法.
涂区域1,有5种颜色可选.
涂区域2,有4种颜色可选.
涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.
所以共有5×4×(1×4+3×3)=260种涂色方法.
练习册系列答案
相关题目