题目内容

已知函数f(x)=4sin2(
π
4
+x)-2
3
cos2x-1
,且给定条件p:“
π
4
≤x≤
π
2
”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)-m|<2“且p是q的充分条件,求实数m的取值范围.
分析:(1)先根据两角和与差的公式进行化简,再由x的范围求出2x-
x
3
的范围,再结合正弦函数的性质可求出其最大、最小值.
(2)先根据|f(x)-m|<2求出f(x)的范围,再由p是q的充分条件和(1)中f(x)的最大、最小值可得到m的范围.
解答:解:(1)∵f(x)=2[1-cos(
π
2
+2x)]-2
3
cos2x-1=2sin2x-2
3
cos2x+1
=4sin(2x-
π
3
)+1.
又∵
π
4
≤x≤
π
2

π
6
≤2x-
x
3
3

即3≤4sin(2x-
π
3
)+1≤5
∴f(x)max=5,f(x)min=3
(2)∵|f(x)-m|<2,
∴m-2<f(x)<m+2
又p是q的充分条件
m-2<3
m+2>5

∴3<m<5.
点评:本题主要考查两角和与差的公式的应用和正弦函数的性质.高考中对三角函数的考查以基础题为主,平时要注意对基础知识的积累和运用的灵活性的锻炼.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网