题目内容
在中,已知.
(1)求证:;
(2)若求角A的大小.
(1)求证:;
(2)若求角A的大小.
(1)证明见解析;(2).
试题分析:(1)已知的向量的数量积,要证明的是角的关系,故我们首先运用数量积定义把已知转化为三角形的边角关系,由已知可得,即,考虑到求证式只是角的关系,因此我们再应用正弦定理把式子中边的关系转化为角的关系,即有,而这时两边同除以即得待证式(要说明均不为零).(2)要求解的大小,一般是求出这个角的某个三角函数值,本题应该求,因为(1)中有可利用,思路是.
试题解析:(1)∵,∴,
即. 2分
由正弦定理,得,∴. 4分
又∵,∴.∴即. 6分
(2)∵,∴.∴.8分
∴,即.∴. 10分
由 (1) ,得,解得. 12分
∵,∴.∴. 14分
练习册系列答案
相关题目