题目内容

已知△ABC的角A、B、C所对的边分别是a、b、c,设向量
(1)若,求证:△ABC为等腰三角形;
(2)若,边长c=2,角C=,求△ABC的面积.
【答案】分析:(1)利用向量平行的条件,写出向量平行坐标形式的条件,得到关于三角形的边和角之间的关系,利用余弦定理变形得到三角形是等腰三角形.
(2)利用向量垂直数量积为零,写出三角形边之间的关系,结合余弦定理得到求三角形面积所需的两边的乘积的值,求出三角形的面积.
解答:证明:(1)∵m∥n
∴asinA=bsinB
即a•=b•.其中R为△ABC外接圆半径.
∴a=b
∴△ABC为等腰三角形.
(2)由题意,m•p=0
∴a(b-2)+b(a-2)=0
∴a+b=ab
由余弦定理4=a2+b2-2ab•cos
∴4=a2+b2-ab=(a+b)2-3ab
∴ab2-3ab-4=0
∴ab=4或ab=-1(舍去)
∴S△ABC=absinC
=×4×sin=
点评:向量是数学中重要和基本的概念之一,它既是代数的对象,又是几何的对象,作为代数的对象,向量可以运算,而作为几何对象,向量有方向,可以刻画直线、平面切线等几何对象;向量有长度,可以刻画长度等几何度量问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网